
Thermal denaturation of double-stranded DNA: Effect of base stacking

Mohammad Kohandel
Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

Bae-Yeun Ha*
Department of Physics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

�Received 16 August 2005; published 11 January 2006�

We study the thermal denaturation of double-stranded DNA, i.e., separation of its two strands upon heating.
A simple homo-polymer model is used to account for the effect of base stacking on the thermal stability of
DNA. We find that stacking influences the stability in a nontrivial way: It not only enhances the stability but
also makes the denaturation transition sharp. While stacking between bound monomers stabilizes DNA as does
base pairing, stacking in unbound parts �or loops� rather destabilizes DNA—the overall stability is, however,
enhanced by stacking.
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I. INTRODUCTION

DNA is a double-stranded �ds� chain molecule formed by
two separate strands, each consisting of chain segments or
monomers �1�. The two strands are wound round each other
with base pairing, i.e., the “key and lock” bonding between
Watson-Crick pairs. The dsDNA molecule is stabilized by
yet another factor: base stacking within each strand �2�. Un-
like covalent bonds, these interactions can be disturbed rela-
tively easily by thermal fluctuations or external perturbations
�ligand binding or external forces� �3,4�. This allows DNA to
undergo various conformational transitions required for its
biological functioning.

Local denaturation of dsDNA, i.e., partial opening of base
pairs, is an essential physical step prior to DNA replication
and transcription: The dsDNA becomes partially denaturated
by an enzyme, exposing its bases to other molecules �1�.
Also, dsDNA will denaturate if it is heated up or its two
opposing ends are pulled apart �1,4�. The capability of DNA
to change its stability against denaturation is crucial for a
living cell to survive; it is at the heart of the storage and
transmission of genetic information �1,4�. Accordingly, the
problem of DNA denaturation has been the subject of exten-
sive experimental and theoretical investigation �5–21�. It is
not only of practical interest due to its significance in biology
but also of fundamental interest: DNA denaturation is re-
garded as a rare and novel example of one-dimensional
phase transitions �7–21�. The transition can easily be moni-
tored experimentally because it results in a large increase in
the absorbance of UV light at �260 nm �5–8�. Artificial
DNA molecules consisting of one type of bases along one
strand and complimentary based on the other have been
shown to exhibit a sharp denaturation transition. On the other
hand, the denaturation of natural DNA molecules occurs in
multiple steps in a sequence-dependent way �5–8�. This ob-
servation has spurred extensive investigation to study the
underlying physics of the denaturation transition—its exis-
tence and nature �5–21�.

The observation of DNA molecules using cryomicroscopy
shows that denaturation starts with local opening of denatur-
ation “bubbles” that grow in size with increasing temperature
and coalesce into each other �see, for example, Fig. 2 in Ref.
�6�, Fig. 7 in Ref. �7�, Fig. 4 in Ref. �8�, or Fig. 8 in Ref. �9��.
This will eventually cause separation of the two strands at
the denaturation temperature. In this sense, thermal fluctua-
tions are precursors to denaturation, and the study of DNA
stability against thermal denaturation is an essential step to-
ward a better understanding of DNA stability. An early
model along this line was discussed by Poland and Scheraga
�PS� �11� nearly 40 years ago. In the PS model, a DNA mol-
ecule is considered as being composed of an alternating array
of bound and denaturated states as schematically illustrated
in Fig. 1. Since its introduction, the PS model has been used
widely in the literature �12–15�. The entropic �and energetic�
weights are different for open bubbles and for double
stranded states. The number of conformations of a loop of
length � varies as s� /�c for large �, where s is a nonuniversal
constant. As it turns out, the existence and characteristics of
a denaturation transition are dictated by the exponent c,
which depends upon spatial dimensions and excluded vol-
ume �11–16� �also see below�. Excluded-volume interactions
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FIG. 1. �Color online� Schematic representation of a locally de-
naturated DNA molecule. In Poland-Scheraga model, the molecule
consists of an alternating array of bound states and loops; if the
loops are entropically favored, the bound states are energetically
preferred. Accordingly, the thermal stability of DNA is determined
by the balance of the two opposing effects: energy and entropy. This
consideration is, however, complicated by base stacking in loops—
see Sec. II B for details.
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within a loop make the transition sharper �still continuous for
d=2,3� �16�; when these interactions between loops and the
rest of the chain are also included, denatuation becomes a
first-order transition �14,15�. Some theoretical approaches in-
clude such complexities as DNA sequence heterogeneity
�17,18� and helical structures �19,20�. Dynamical aspects of
local denaturation can be found in Ref. �22�. Finally, some
authors discuss the effect on DNA denaturation of a pulling
force acting on the opposing ends of a DNA molecule
�23,24�.

As briefly mentioned earlier, both base pairing and base
stacking stabilize dsDNA against denaturation �see, for ex-
ample, Ref. �2� and references therein�. Electrostatic interac-
tions between bases can also influence the stability but these
are not explicitly included here. Base pairing solely cannot
account for DNA stability in an aqueous environment, since
bases can form hydrogen bonding with surrounding water
molecules, meaning that base pairing is relatively weak in
water �2�. In a minimalist model, stacking in bounded states
can be considered as renormalizing base-pairing energy as
done in many theoretical approaches �11–15�. On the other
hand, base stacking can occur not only between monomers in
bound states but also between those in loops. Recently, the
persistence length of single-stranded �ss� DNA has been
measured at room temperature as a function of the ambient
salt concentration �25�. This measurement suggests that the
intrinsic �nonelectrostatic� persistence length �p ranges from
8 to 13 Å. In this estimate, it was assumed that bs=4.3 Å,
where bs is the inter-base distance of ssDNA. �Note that the
value of bs varies from reference to reference. For example,
Smith et al. reported bs�5.6 Å �26�; Mills et al. find bs for
homogeneous ssDNA to be bs�5–7 Å �27�.� Obviously the
estimated �p is much larger than the bare persistence length
�0=bs /2. This indicates that base stacking can stiffen ssDNA
noticeably. By the same token, bases in loops can be stacked
as in ssDNA. It is thus desirable to examine base stacking
and base pairing on an equal footing.

The main purpose of this paper is to discuss the effect of
base stacking on the DNA stability against thermal denatur-
ation. In particular, we will examine how base stacking in-
fluences the DNA stability. To this end, we generalize the
grand canonical approach to a PS type model adopted in
Refs. �14,15� to incorporate more consistently stacking inter-
actions between two consecutive bases along the same
strand. �Note that the approach used in Ref. �13� is essen-
tially the same in spirit as those in Refs. �14,15�.� It will thus
test a renormalized parameter approach, in which base stack-
ing is considered as enhancing base pairing �11–15�. We use
a simple model of stacking introduced in Refs. �28,29�: a
two-state model in which two adjacent monomers are either
“stacked” or “unstacked.” Throughout this paper, we sup-
press the heterogeneity of bases and assume that all stacked
bases gain the same energy: If stacked, i.e., aligned with each
other in parallel, they gain stacking energy Es; otherwise
they are free to bend or rotate around each other. The result-
ing model incorporates base stacking into the commonly
used freely-jointed chain �see for example Ref. �30��. Note
that this is distinct from the early one �10� that includes
“displacement-dependent” stiffness, in which stacking is in-
cluded when two complimentary bases �in opposing strands�

are sufficiently close—in the latter, stacking is not included
in loop parts. Using the stacking chain model, we find that
the role of stacking is nontrivial: It not only enhances the
stability but also makes the denaturation transition sharp
�even when excluded volume interactions are suppressed�.
Obviously, stacking between bound monomers tends to sta-
bilize DNA as does base pairing. Interestingly, we find that
stacking in unbound parts �or loops� rather destabilizes DNA
by making the transition sharper and thus lowering the dena-
turation temperature. On the other hand, the overall stability
of DNA is enhanced by stacking.

The rest of paper is organized as follows. After briefly
reviewing PS model in Sec. II A, we introduce our general-
ized model in Sec. II B, followed by results and discussions
in Sec. III.

II. MODELS

A. Grand canonical approach to the PS Model

In Poland-Scheraga �PS� type models, a DNA molecule is
considered as an alternating sequence of bound segments and
denaturated loops as illustrated in Fig. 1. If loops are favored
by the chain entropy, bound states are energetically pre-
ferred. The binding energy E0�0 is taken to be the same for
all base pairs. With this simplification, the statistical weight
for a bound sequence of length � is then given by w�

=exp�−�E0 /kBT�, where T is the temperature and kB is the
Boltzmann constant �the monomer size is set to 1�. On the
other hand, the statistical weight of a denaturated sequence
of length � is given by ��2��=As� /�c �for large ��, where s
is a nonuniversal constant and the exponent c is determined
by the properties of the loop configurations �for simplicity,
we choose A=1�. Finally, the precise form of the statistical
weight of the denaturated end is not required unless the DNA
molecule is fully denaturated �see Ref. �15� for details�. In
principle, excluded-volume interactions can be taken into ac-
count through the exponent c �14,15�, which will essentially
determine the nature of denaturation transitions �see below�.

The model is most easily formulated within the grand
canonical ensemble, where the total chain length L is al-
lowed to fluctuate. In this section, we closely follow the
grand canonical approach adopted in Refs. �14,15�. First,
note that the explicit form of the grand partition function
depends on “boundary conditions.” References �14,15� adopt
the boundary condition that two monomers at one end of the
molecule are assumed to be bound �14,15�. On the other
hand, two monomers at the other end are assumed to be
either bound �14� or free �unbound� �15�. In the thermody-
namic limit �which we shall focus on later�, the boundary
becomes minimal. Following Ref. �15�, the grand canonical
partition function, Z, is given by

Z�z� = �
L=0

�

Z�L�zL =
V0�z�Q�z�

1 − U�z�V�z�
, �1�

where Z�L� is the canonical partition function for chain
length L, z is the fugacity, and
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U�z� = �
�=1

�

��2��z� = �
�=1

�
s�

�cz�,

V�z� = �
�=1

�

w�z�. �2�

Finally, V0�z�=1+V�z� is the grand partition function of the
bound end and Q�z� is the grand partition function of the
denaturated end segment �15�. �Below the denaturation tem-
perature, the explicit form of this term is not required �15�.�

To set the average chain length, one has to choose a
fugacity such that �L	=� ln Z /� ln z. The fraction of bound
monomer pairs � is experimentally measurable and is chosen
to be the order parameter of the transition. In this formalism,
the average number of bound pairs in a chain is given by
�m	=� ln Z /� ln w �13–15�, so that

� = lim
L→�

�m	
�L	

= −
� ln z*

� ln w
. �3�

Here, z* is the value of the fugacity in the thermodynamic
limit �L	→�: U�z*�V�z*�=1. �The negative sign in the sec-
ond term, which is missing in Refs. �14,15�, is to ensure �
�0—see Eq. 3.18 in Ref. �13�.�

The nature of the denaturation transition is determined by
the temperature dependence of the fugacity z*�w� �14,15�.
Depending on the value of the exponent c, we can expect
three distinct possibilities: �i� For c�1, no denaturation
occurs—two strands are always bound. �ii� For 1�c�2,
thermal denaturation is a continuous transition, while �iii� for
c�2 it is a first-order phase transition.

When the effect of excluded volume is suppressed, c
=d /2. As a result, denaturation is a continuous transition for
2�d�4 and a first-order phase transition for d�4, but there
is no transition for d�2. In a more realistic case, the ex-
cluded volume interaction modifies the exponent to c=3/2
for d=2 and c�1.766 for d=3. �Note that c
1.75 used in
Ref. �16� is somewhat smaller than this.� Thus the transition
is sharper, but still continuous, in three dimensions �14–16�.
More recently, it was shown �14,15� that the excluded vol-
ume interactions between denaturated loops and the rest of
the chain make the phase transition first order for d�2. Ref-
erence �21� also reached the conclusion that excluded vol-
ume makes the transition first order, by creating a repulsive
barrier to base pairing.

B. Generalized Model: stacking vs base pairing

A natural extension of the approach introduced in Sec.
II A is to allow stacking in both bound parts and loops.
Stacking between monomers in bound parts can be consid-
ered as renormalizing the binding energy E0: E0→E=E0
+2Es, where Es is the stacking energy between two consecu-
tive bases along the same strand. �Notice that the factor 2 is
to reflect the fact that stacking occurs between stacking pairs
in two strands.� On the other hand, stacking in the loop parts
is nontrivial to incorporate. Nevertheless, we can still use the
general form of Eq. �1�—stacking in the loop parts will alter

U�z�: U�z�→U�z ,Es�, which has yet to be determined. As a
result, the grand canonical partition function of our stacking
chain, ��z�, is given by

��z� =
V0�z,E�Q�z,Es�

1 − U�z,Es�V�z,E�
. �4�

Here, the function V�z ,E� is the same as in Sec. II A with E0

replaced by E, i.e.,

V�z,E� = �
�=1

�

e−�E/kBTz�, �5�

and thus V0�z ,E�=1+V�z ,E�. Finally, Q�z ,Es� describes the
denaturated end �the explicit form of this term is not needed
here�.

To further proceed with the result in Eq. �4�, we need to
explicitly calculate U�z ,Es�, the grand partition function of a
loop. To this end, we first consider a loop consisting of
stacked and unstacked bases, as schematically shown in Fig.
1 �also see Fig. 2�. The canonical partition function of a loop
of length � �in units of the monomer size� is given as the sum
over all realizations of loop conformations, which are char-
acterized by the angles: �n and 	n, where �n �	n� is the polar
�azimuthal� angle of base n+1 with respect to base n. Here,
we use a simple model of stacking �28,29�: If and only if two
consecutive bases �on the same strand� are aligned in parallel
or stacked, they gain an energy Es ��0�. Otherwise, they are
free to bend or rotate around each other like a freely jointed
chain. This amounts to assuming that two consecutive bases
interact with each other through a short-range,
	n-independent potential of the form: Es
�cos �n−1�. As a
result, the Hamiltonian of the loop is simply H
=Es�n=1

� 
�cos �n−1�. As it turns out, the corresponding sta-
tistical weight is given by

FIG. 2. Diagrammatic expansion of the partition function of
loops U�k� used to obtain Eq. �10�. The diagram on the left hand
side illustrates a loop consisting of stacked �s� and unstacked �us�
bases. Stacking interactions tend to align two consecutive bases
with each other in parallel, while the chain entropy prefers random
�unstacked� conformations. The first diagram on the right hand side
corresponds to Uus�k� and the rest can be summed up to yield
�Uus�z ,k�Us�z ,k�� / �1−Uus�z ,k�Us�z ,k��.
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W��n� � e−�H = �
n=1

�

�1 + ��e�Es − 1�
�cos �n − 1�� , �6�

where � is a phenomenological parameter that accounts for
entropy changes involved in stacking �29� �see also endnote
�31��. Throughout this paper, �=1/kBT. For simplicity, we
take �=1.

The canonical partition function of a loop of contour
length �, denoted by Zloop���, can be written as

Zloop��� = D��n�
�
0

�

u�ndn�e−�H, �7�

where D��n�=�n=1
� d�n, d�n= �d cos �n�d	n, and u�n is the

unit vector tangent to monomer n. The grand partition func-
tion then becomes

U�z,Es� = �
�=1

�

Zloop���z� = d3k

�2�3U�z,k� , �8�

where

U�z,k� = �
�=1

�

z� D��n�eik�·�0
�u�ndn−�H �9�

is the grand partition function of a system interacting with an
imaginary field −ik� ·u�n /�.

With the same spirit as in the derivation of Z�z� in Eq.
�1�, using a diagrammatic expansion in Fig. 2, we find

U�z,k� = Uus�z,k� +
Uus�z,k�Us�z,k�

1 − Uus�z,k�Us�z,k�
, �10�

where Uus and Us are, respectively, the grand partition func-
tions of unstacked and stacked parts �in the imaginary field
−ik� ·u�n /��. Note that the structure of this looks somewhat
different from that of Z in Eq. �1�. This is not surprising,
since the topology is different for the two cases �also see
Appendix A, in which open and closed �i.e., loops� chains
are contrasted�. Except in the first diagram, equal numbers of
stacked and unstacked parts alternate in all other diagrams in
Fig. 2.

To calculate the canonical partition function of a stacked
part Zs�k�, imagine adding a stack of n monomers to an al-
ready existing monomer. As a result, there will be n+1
monomers stacked including the previously existing one.
This reasoning leads to the following free energy:

Zs�k� =
1

4


0

2

d	
−1

1

d�cos ��eiknb cos ��e−�Es − 1�n

= � sin nkb

nkb
��e−�Es − 1�n, �11�

where � is the angle between k� and the stacked part �if � is
the polar angle of the stacked part, then k� is assumed to be
aligned with the z axis, not to be confused with the fugacity�
and b is the monomer size. Notice the factor 1 /4 in front of
the integral, which was introduced to ensure that the com-
bined system �the previously existing monomer and those

stacked with it� gains stacking energy Es only, not entropy.
Thus, the grand partition function of the stacked part be-
comes

Us�z,k� = �
n=1

� � sin nkb

nkb
��e−�Es − 1�nzn. �12�

For an unstacked part �for one monomer�, we find

Zus�k� = 
0

2

d	
−1

1

d�cos ��eikb cos � = 4� sin kb

kb
� ,

�13�

where � is the angle between k� and the monomer. The grand
partition function for the unstacked part is then

Uus�z,k� = �
n=1

�

�4�n� sin kb

kb
�n

zn. �14�

Strictly speaking, the total number of monomers in a loop
must be even—each diagram in Fig. 2 is subject to this con-
straint. Except for the first diagram on the right hand side, it
is formidable, if not impossible, to incorporate this, since the
sums in Eqs. �12� and �14� cannot be performed indepen-
dently. On the other hand, for large n, this becomes irrel-
evant. Here and in what follows, we ignore this complication
and assume that n is a positive integer. Note that this is a
reasonable assumption near Tc.

To summarize, the grand canonical partition function �for
simplicity, we set b=1�, after summing up the series, is given
by �32�

��z� =
V0�z,E�Q�z,Es�

1 − U�z,Es�V�z,E�
. �15�

Here

V�z,E� = −
w̃z

w̃z − 1
,

U�z,Es� = d3k

�2�3�Uus�z,k� +
Uus�z,k�Us�z,k�

1 − Uus�z,k�Us�z,k�� ,

Us�z,k� =
− 1

2k
tan−1� 2z̄�− 1 + z̄ cos k�sin k

1 − 2z̄ cos k + z̄2 cos 2k
� ,

Uus�z,k� =
− 4z sin k

4z sin k − k
, �16�

where w̃=e−�E=we−�Es, V0�z ,E�=1+V�z ,E�, and z̄=z�e−�Es

−1�.
Before further proceeding with Eq. �16�, it’s worth con-

sidering the limit: Es→0. In this limit, Us�z ,k�=0 and
U�z ,k�=Uus�z ,k�. We then have
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U�z� = d3k

�2�3Uus�k� = �
n=1

�

�4z�n d3k

�2�3� sin k

k
�n

.

�17�

If we use �sin k /k�n�exp�−nk2 /6� �works well for large n
and small k�, we find

U�z� = �
n=1

�
A�4z�n

n3/2 , �18�

where A= �6�3/2 / �2�3�0.35. In this case, our U�z� re-
duces to that in PS model as expected. As a result, the grand
partition function in Eq. �16� reduces to the one in Eq. �4�.

III. RESULTS AND DISCUSSIONS

Of practical interest is the fraction of bound base pairs,
which is experimentally measurable �5–9�. At sufficiently
low temperatures, all bases are bound to each other, while, at
too high temperatures, they are all unbound. Thus, � de-
creases from one to zero as the temperature increases. As we
discussed in Sec. II, the fraction of bound pairs is defined as
�=−� ln z* /� ln w. The thermodynamic limit �L	→� is ob-
tained by letting z approach the lowest fugacity z* for which
the partition function diverges �14,15�. This is realized for z*

satisfying

U�z*� =
1

V�z*�
=

1

�wz*�
− 1. �19�

Taking the derivative of the first and last terms with respect
to z*, one can find

� =
1

1 + wz*2 d3k

�2�3

�U�z*,k�
�z*

. �20�

Note that U does not depend on w, while V does �i.e., V
=V(z* ,w*�z*�)�. It is thus much easier to calculate �U�z*� /�z*

than ��1/V(z* ,w�z*�)� /�z*. This explains why � is expressed
in terms of U, not V. The equation along with Eq. �16� and
Eq. �19� can be used to evaluate �.

The expression for � in Eq. �20� enables us to study the
effect of stacking on DNA stability. In a minimalist ap-
proach, one can consider stacking as renormalizing base
pairing: Stacking energy Es simply adds to base-pairing en-
ergy E0. However, this oversimplifies the picture as evi-
denced below.

Using Eq. �20�, we have calculated ��T� as a function of T
�in units of room temperature� and plotted our results in Fig.
3 �32�. We have chosen E=E0+2Es=−3 �in units of kBT at
room temperature� for different choices of Es; we have sup-
pressed potential T dependence of E0 and Es. Note that our
choices of E and Es should not be taken literally, since we set
�=1 �� is largely unknown� and use other approximations.
For Es=0, ��T� seems to behave as �T−Tc�1/2 close to the
denaturation temperature Tc, at which �=0. This observation
is inconsistent with Refs. �14–16�, which support ��T���T
−Tc� near Tc for ideal chains �i.e., Es=0�. But notice that this

result is based on a large n approximation, which amounts to
taking �sin k /k�n=exp�−nk2 /6�. When we used this approxi-
mation with Es=0, we indeed confirmed the linear depen-
dence of � on �T−Tc� �not shown in Fig. 3�.

At low temperatures, there is no essential difference be-
tween the nonstacking �or Es=0� and stacking cases �Es

�0�. This is not surprising: Most of the monomers are bound
and stacking can be considered as renormalizing the base-
pairing energy. On the other hand, they differ at higher tem-
peratures, especially close to Tc. This tends to invalidate a
renormalized-parameter approach, in which both stacking
and base pairing are subsumed into a single parameter E0.
Below we summarize the dominant features of � near Tc
�T�Tc�.

First, for given T and E, � decreases as �Es� increases. As
a result, the denaturation temperature is lower for larger �Es�.
In other words, stacking in loops destabilizes dsDNA. At first
glance, this is puzzling: For stronger stacking strength �and
for given E�, the entropic gain for loops is less significant.
From an entropy consideration only, this implies that DNA is
more stable for larger �Es�. This reasoning is, however, erro-
neous. To illustrate the role of stacking, imagine changing Es
from zero to a negative value, while keeping E=E0+2Es
fixed. When E�2Es and E0�0, two strands become almost
decoupled. The resulting system is essentially two noninter-
acting or weakly interacting strands, which can be relatively
easily denaturated. This may explain the general trend of our
results in Fig. 3. On the other hand, the overall stability is
enhanced by stacking. To see this, we have compared in-
verted triangles �E0=−1.5, Es=−0.75� with the dotted line

FIG. 3. �Color online� The fraction of bound monomers ��T� as
a function of temperature T for E=−3 �T is given in units of room
temperature and E in units of kBT at room temperature�. For the
three curves with symbols, the total energy E=E0+2Es is held
fixed. The denaturation transition occurs at smaller T for larger �Es�.
This implies that stacking in loops tends to destabilize DNA. �This
is the only possible interpretation, since stacking in bound states
enhances the DNA stability as does base pairing.� The most salient
feature is that base stacking sharpens the transition—the transition
becomes shaper as �Es� increases. In this analysis, we ignore poten-
tial T dependence of Es and E0. �To construct this figure, we have
adopted a rather coarse-grained model of stacking and thus the pa-
rameters used here should not be taken literally.�
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�E0=−1.5, Es=0�; E0 is the same for the two cases, but Es is
set to zero in the latter. The former corresponds to much
higher Tc, indicating that stacking enhances the stability.

Second, stacking makes the transition sharper; it appears
that the transition is first order. To further confirm this obser-
vation, we have studied the nature of the transition from a
different angle. To this end, we have considered the functions
U�z ,Es� and V�z ,E� in Eq. �4� as a function of z. This con-
sideration compliments our finding that the transition is first
order for Es�0 �see Appendix B for details�. This is illumi-
nating, as it indicates that sharp transitions observed experi-
mentally may be attributed to stacking interactions. On the
other hand, earlier results �14,15� suggest that excluded vol-
ume interactions are required for sharp transitions �when
stacking in loops is not included�. It is natural to expect both
stacking and the excluded-volume interaction to be respon-
sible for the sharp transition. While our observation is analo-
gous to the repulsive barrier proposed in Ref. �21�, it is
unique in the sense that long-distance �along the contour�
interactions are not required. Importantly, this finding is
based on an almost exactly solvable model and is not ob-
scured by uncontrollable approximations or ad hoc assump-
tions. A plausible reason for our finding is as follows: Stack-
ing in loops reduces the weight of the loop �or the “ring-
closure” probability�; in other words, it enhances the barrier
to ring-closure �the free energy cost for looping is higher for
larger �Es��. One possible speculation is that this unfavorable
free energy can be reduced if two loops merge into each
other to form a bigger loop—this can create a tendency for
DNA to denaturate more abruptly.

IV. CONCLUSIONS

To summarize, we have presented a theoretical formalism
for describing the thermal stability of double-stranded DNA
by treating base stacking and base pairing on an equal foot-
ing. The main focus has been on studying how stacking in-
fluences the nature of thermal denaturation. The effects of
base stacking are nontrivial: While stacking in bound states
enhances the stability as does base pairing, stacking in loops
makes denaturation transitions sharp—the overall stability is
enhanced by stacking. This implies that both base stacking
and base pairing should be included simultaneously. Our
analysis of the transition in term of the fraction of bound
monomers, presented in Fig. 3, has been further augmented
by the graphical analysis of U�z� and V�z� in Eq. �16�—see
Appendix B. �While the former analysis is more experimen-
tally accessible, the later is more analogous to those in Refs.
�14,15�.� The graphical analysis also shows how stacking can
sharpen the transition.

Molecular details ignored in this work can easily compli-
cate the analysis. As it turns out, different stacks �i.e., two
consecutive bases along the same strand� show varying lev-
els of stacking tendency �2,33�: Stacking is strongest for
purine-purine stacks �e.g., A-A and G-G� and weakest for
pyrimidine-pyrimidine stacks �e.g., T-T�; purine-pyrimidine
stacks �e.g., A-T� show an intermediate level of stacking. On
the other hand, base pairing is stronger for G-C pairs than for
A-T pairs. Consideration of both effects simultaneously is

formidable, if not impossible, and goes beyond the scope of
this work. In addition, we have not considered the geometric
constraint imposed on loops, i.e., a “Y-fork” topology: For-
mation of a loop may require additional breakage of stacking
at a Y-fork formed between a bound part and an adjacent
loop. This extra complexity can change the stability. Finally,
the chain entropy of bound parts and “mis-folding” of loops
�base pairing within each loop� ignored here will also com-
plicate the picture. Further investigation is certainly war-
ranted.
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APPENDIX A

The main difference in structure between Eqs. �1� and
�10� arises from their topological difference: “open” vs
“closed.” It proves useful to consider a single-stranded linear
�open� chain, for which one can obtain the canonical free
energy �and thus the grand free energy�—we will eventually
let the chain form a loop. This consideration will elucidate
our diagrammatic expansion adopted in Sec. II B �see be-
low�. By mapping the linear chain onto a linear array of
“two-state systems,” in which two consecutive monomers
are either stacked or unstacked, one can readily obtain the
canonical free energy: With ws=e−�Es −1, Zn=4�4
+ws�n−1, where n is the number of monomers. This leads to
the grand free energy

Uo = �
n=1

�

4�4 + ws�n−1zn =
− 4z

− 1 + �4 + ws�z
, �A1�

where the subscript “o” refers to open conformations and our
notation Uo for the grand free energy was chosen in parallel
with U�z ,k� in Eq. �10�. Note that n=0 is excluded in the
sum as in Eqs. �2�, �12�, and �14�—the purpose of this cal-
culation is in part to contrast the linear case against the loop
in Fig. 2.

We can also obtain the grand free energy using a diagram-
matic expansion. To this end, by taking k→0 in Eqs. �12�
and �14�, we obtain

Us
�0� = Us�z,k → 0� = �

n=1

�

�wsz�n =
− wsz

− 1 + wsz
, �A2a�

Uus
�0� = Uus�z,k → 0� = �

n=1

�

�4z�n =
− 4z

− 1 + 4z
. �A2b�

Not surprisingly, these are identical to those for the linear
case—in the limit k→0, the ring-closure condition becomes
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irrelevant. The grand canonical partition function is then

U�0� = Uus
�0� + Uus

�0�Us
�0� + Uus

�0�Us
�0�Uus

�0� + Uus
�0�Us

�0�Uus
�0�Us

�0� + ¯

=
Uus

�0��1 + Us
�0��

1 − Uus
�0�Us

�0� . �A3�

Note that the series starts with unstacked �i.e., a single mono-
mer at one end of the chain�. For this reason, we do not
include Us

�0�—single monomers cannot be stacked. If com-
bined with the results in Eq. �A2�, Eq. �A3� reduces to Uo as
expected.

Now imagine the chain forming a loop. Obviously
nonzero-k contributions should come into play. This does not
mean that we can simply turn on k dependence in the dia-
grammatic expansion in Eq. �A3�. One should note that not
all terms in Eq. �A3� are unique when they represent a loop.
For example, UusUsUus is not distinct from UusUs and is thus
redundant. Obviously one should include the latter. Except
for Uus, only even-power terms will survive �see Eq. �10� and
Fig. 2�.

APPENDIX B

This appendix will elucidate our picture of base stacking
as sharpening the denaturation transition. Our discussion is
based on Refs. �14,15� but requires a nontrivial generaliza-
tion to include stacking. As in Sec. II B, we will largely
ignore excluded volume. As discussed in Refs. �14,15� for
the nonstacking case Es=0, the existence and nature of de-
naturation transitions are mainly determined by the behavior
of U�z� near z=1/s �we set s=4�, which depends on loop
statistics �e.g., the exponent c�. �Note that, for given energy
E, V depends on T and z only.�

First, recall that �= �1+wz*2��−1, where ���U�z*� /�z*.
Graphically z* can be obtained by locating z at which U�z�
crosses 1/V�z�: U�z*�=1/V�z*�=1/wz*−1. A few graphs of
U and 1/V are shown in Fig. 4 �see the caption for details�;
U �1/V� is a monotonically increasing �decreasing� function
of z and thus there is only one z* for given Es and T. Also
note that there exists a special value of z �to be denoted by
z�� beyond which U�z� diverges, as described by the gray
vertical lines in Fig. 4 �this can readily be seen from Eq. �2�
for Es=0�. As it turns out, for Es�0, z� is the zero
of �1−Uus�z ,k�Us�z ,k��k→0 �see Eq. �10� or Eq. �16��—there
is only one zero. On the other hand, for Es=0, z�=1/4 is
the zero of 4z sin k−k, the denominator of Uus in Eq. �16�,
in the limit k→0. As T increases, the curve 1/V�z� shifts to
the right and thus z* increases; it approaches the curve z−1

−1 as T→�. This sets the maximum value of z* denoted by
zM

* corresponding to T→�: U�zM
* �=1/zM

* −1. Depending
upon the values of z� and zM

* , there can arise a few distinct
possibilities:

�1� zM
* �z�: In this case, z* increases monotonically as T

increases. On the other hand, U�z*� remains finite for z

�zM
* . As a result, ���U�z*� /�z* is always finite. This means

that ��0 for any T and thus there is no transition. This can
be realized when c�1 and Es=0 �14,15� �not shown in Fig.
4�. As discussed in the literature �see Refs. �14,15� and ref-
erences therein�, for ideal chains �i.e., with excluded volume
“turned off”�, c=d /2, where d is the dimensionality—there
is no transition for d�2.

�2� zM
* =z� �this ensures 1 /V�z���U�z���. In this case,

one can find T=Tc at which 1/V�zM
* �=U�zM

* �. As T→Tc from
below, z*→zM

* ; beyond Tc, however, z* remains unchanged.
As a result, �→� �thus �=0� for T�Tc. Depending upon
the behavior of U�z� around zM

* , this case can be further
classified into two subclasses: �a� If ��U /�z�z→zM

* →�, � de-
cays to zero continuously as T approaches Tc, indicating a
continuous transition. This can be realized for 1�c�2 �and
Es=0� as evidenced by the bottom solid curve �also see Fig.
4 in Ref. �15��. �b� If ��U /�z�z→zM

* ��, then ��� for T
�Tc, implying that � changes abruptly from a finite value
��0� to zero at Tc �recall �=0 for T�Tc�. Thus the transition
is first order. For Es=0, this can happen for c�2 �not shown
in the figure�, which requires excluded volume �14,15��. On
the other hand, when stacking is included �i.e., Es�0�, the
transition can be first order, as indicated by the curve for
Es=−1.0 and T=Tc�1.3 �in units of room temperature� in
Fig. 4. This confirms the sharpness of the transition indicated
in Fig. 3.

FIG. 4. �Color online� Graphs of U�z ,Es� and 1/V�z ,E� for E
=−3.0 �in units of kBT at room temperature�. The solid lines are
U�z ,Es�; from the bottom one, they correspond to Es=0 �T=Tc

�1.43�, Es=−1.0 �T=Tc�1.3�, and Es=−1.0 �T=1.0�, respectively
�T is given in units of room temperature�. The dashed lines are
1/V�z ,E�, from the one on the right, they correspond to Es=0 �T
=Tc�1.43�, Es=−1.0 �T=Tc�1.3�, and Es=−1.0 �T=1.0�, respec-
tively. In the electronic version, different choices of the parameters
are described by different colors �see the legend�.
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